أنظمة متطورة لشبكات الصرف الصحي والأمطار

ديمومة عالية للبنى التحتية حلول إقتصادية ...

Plastics piping systems for non-pressure underground drainage and sewerage. Made of polyethylene (PE) According to EN 13476

TECHNO GROUP®

R

LUO

ID > 400mm (500 up to 3000 mm) TECHNO GROUP®

Properties of PE pipelines

- High abrasion resistance
- Corrosion resistance (chemical compounds)
- Very good fluid-flow properties
- Non toxic material
- 100% tight joints
- Flexibility
- Light weight
- Reliability

High Abrasion Resistance

SOURCE: University of Darmstadt (DIN 19534)

Corrosion Resistance (chemical compounds)

Polyethylene pipes are low-resistant to oxidants and aromatic solvents.

Concrete & Clay Failures

Very Good fluid-flow Properties

PE pipes retain low and constant roughness grade k = 0.01 mm.

Non Toxic Material

Construction of drinking water tanks. Such tanks are made of PE material approved by the PZH (National Institute of Hygiene) in Warsaw.

100% Tight Joints

Joints DIN 16961-1

Push-in Joint With Seal

Joints DIN 16961-1

Socket For Resistance Welding

SASMO 3062 / 2009

Schematic view of connection

Socket Connections

2) Place seal between two first ridges of the pipe

3) Push the pipe end into socket

Flexibility

With natural bend radius of R = 50 outside diameters, PE pipes may be laid according to variations of the pipeline route and in many cases use of expensive fittings can be avoided.

Light Weight

Reliability

Failure frequency of PE pipes is much lower than that of rigid pipes (Concrete, Clay, GRP).

PE pipes are resistant to changing atmospheric conditions.

Interaction Between pipe & ground

➢Behavior of the pipe under load depends on its stiffness.

➢Flexible PE pipes interact with the ground and form stable ground-pipe system.

Rigid pipes load is mainly taken by the pipe material. When the load exceeds permissible value damage of the pipe occurs.

Flexible pipes

Rigid pipes

Ring Stiffness

SN= E I/D_m³

Where :

- **E** = Modulus of material elasticity, in Pa
- **D**_m = means pipe diameter, in m
- $I = moment of inertia, in m^4/m$

Moment of Inertia, I

$I = S^{3}/12$

S: Effective Thickness

Pipe Profile

- **D**_e : External Diameter
- **D**_i : Internal Diameter

Ring Stiffness Against Deformation

$S_R = (0.0186 + 0.025 \text{ y/d}) \text{ F/L}_y$

Classification Of Mineral Soil

Name of soil	Symbol	Sub-type	Fraction [mm]
Loam	i.		<0,002
0. 	8 	Dusty clay	0,002 - 0,006
Clay	G	Clay	0,006 - 0,02
	cc.	Sandy clay	0,02 - 0,06
		Fine sand	0,06 - 0,2
Sand	P	Medium sand	0,2 - 0,6
		Coarse sand	0,5 - 2,0
		Fine gravel	2,0 - 6,0
Gravel	Ż	Medium gravel	6,0 - 20,0
		Coarse gravel	20,0 - 60,0

Modulus of The Resistance of The Ground

VALUES FOR E

	LOOSE MATERIAL	CON	MPACTE VIERIAI	D
PROCTOR INDEX		< 85 %	85+90 %	> 95 %
RELATIVE DENSITY		< 40 %	40+70 %	> 70%
TYPE OF GROUND		E' N/mm ²		
Ground with low granulometry LL > 50	0	0	0	0.35
Soils with average and high plasticity	(recomme	nded a detail	ori analys	6)
Cohesive ground with low granulometry LL>50 Soils with average and low plasticity with less than 25% of coarse particles	0.35	1.38	2.76	6.9
Ground with low granulometry LL>50 Soils with low or average plasticity with more than 25% of coarse particles Soils with coarse granulometry with more than 12% of fine particles	0.69	2.76	6.9	13.8
Ground with coarse granulometry with less than 12% of fine particles	0.69	6.9	13.8	20.7
Crushed rock	6.9	20.7	20.7	20.7
Accuracy in terms of difference between calculated and real deformation (in %)	±2%	±2%	±2%	±0.5%

Soil Classification

	Gr	oup of soils				
Type of soil	#	Typical description	Symbol	Characteristics	Example	Use
		Gravel, gap graining	(GE) [GU]	Steep grain-size distribution curve, domination of one fraction	Crushed stone, valley and beach gravel, glacial gravel	
	1	Gravel, continuous grading	[GW]	Smooth grain-size distribution curve, several fractions	ocorio, volconio dust	YES
		VVell graded aggregate	(GI) [GP]	Stepped grain-size curve, certain fractions missing	Scona, voicanic dust	
loose	_	Sand, gap grading	(SE) [SU]	Steep grain-size distribution curve, domination of one fraction	Dune sands, deposited sands, sands from valleys and troughs	VES
		Sand, continuous grading, well graded aggregate	[SW]	Smooth grain-size distribution curve, several fractions	Glacial, terrace and	TES
		VVell graded aggregate	(SI) [SP]	Stepped grain-size curve, certain fractions missing	shoreface sands	
		Loam gravel, gap grained Ioam aggregate	[GM] (GU)	Gap grained, contains loam fraction	Weathered gravel,	
looso	3	Clay gravel, well graded gap grained loam aggregate	[GC] (GT)	Gap grained, contains fi ne clay fraction	gravel	VES
10058		Loam sand, gap grained sandclay mix	[SM] (SU)	Gap grained, contains fi ne loam	Watered sand, clay sand, sand loess	163
		Clay sand, gap grained sand-clay mix	[SC] (ST)	Gap grained, contains fi ne clay	Clay sand, alluvial clay, marl	

Soil Classification

2000 - 100 -	Gr	oup of soils				
Type of soil	#	Typical description	Symbol	Characteristics	Example	Use
1.000		Inorganic loam, fi ne sand, stone dust, clay and loam	[ML] (UL)	Poor stability, quick mechanical reaction, plasticity zero to small	Loess, sand clay	
coherent	4	Inorganic clay, clay of high plasticity	[CL] (TA) (TL) TM	Stability medium to very good, mechanical reaction not very fast, plasticity poor to medium	Alluvial marl, clay	YES
12		Multi-fractional loose soil with humus	[ок]	Vegetable and non-vegetable matter, putrefactive stench, low volumetric weight, high porosity	Humus, chalk sand, tuff	
organic	5	Organic loam and organic clay-loam mix	[OL] (OU)	Medium stability, mechanical reaction slow to very fast, plasticity low to medium	Sea chalk, humus	NO
		Organic clay, clay with organic matter	[OH] (OT)	High stability, no mechanical reaction, plasticity medium to high	Silt, moulder's loam	
		Peat, and other highly organic soils	[Pt] (HN) (HZ)	Decomposing peat, fi brous, colours from brown to black	Peat	
organic	6	Silt	[H]	Sludge deposited at the bottom of water-course, often mixed with sand/clay/chalk, very soft	Silt	NO

Deformation Under Load

SPANGLER Equation

Y=0.083 (p)/(16Sr+0.12Es)

Where :

- Y : Deformation in meters(m)
- **P** : Total Load(Ground + Traffic) kN/m^2
- Sr : Ring Stiffness in KN/m
- **Es** : Secant Modulus of Ground in kN/m^2

Loads Due to Traffic And Static Loads

$p_t = 3Q D_e/2\pi H^2$, in N/m

Where :

•**Q** : Wheel Load in KN, **D** : External Diameter in M

•H : Cover height, in M

Class of load	Total load Q, kN	Wheel load Q, kN
Heavy traffic	600	100
Average traffic	450	75
	300	50
Light traffic	120	20
	60	20
Cars	30	10

Loads In Function of Laying Depths

H, m	0.5	1	2	3	4	5	6	7
P _o , kN	6.5	12	23	31	37	43	47	51
P _t , kN	153	38	10	2.2	2.4	1.5	1.1	0.8
P _{tot} , kN	159	51	32	35	40	44	48	52

Ground Modulus against Deformation Using pipes with different Ring Stiffness

as the shortening of the vertical diameter can be simply kept within reasonable limits by fairly slight compaction, provided that the filling around the pipe consists of unfrozen friction material. Under such conditions as a rule, only 75 - 80% Modified Proctor packing is required which is generally attainable by mere foot tramping of the fill. An excellent example of a feasible embedment material, which does not need very much of compaction is a single size gravel, type pea gravel, commonly used in UK according to British Code of Practice. Thus, the mechanical compaction energy needed for achieving a dense soil around the pipe is rare. Pea gravel is therefore particularly suitable for supporting pipes with low ring stiffness values significantly below 4 kN/m², as then the compaction work itself will not contribute so very much to the otherwise easily occurring local "wild" deflections.

Pict 6.1.a. 17 caterpilar, 0,5m of cover. No deflection is visible. Pipe stiffness is 2kN/m².

Trench construction

- Permissible slope in open trench without boardingType of soilMax. slope H:xHighly cohesive2:1Rocky1:1Other cohesive soils1:1.25Non-cohesive1:1.5
- B. Open trench with vertical walls without boarding

Permissible depth of vertical wall trench without boarding				
Type of soil	Max. trench depth			
Solid rocky ground without cracks	4.0 m,			
Cohesive soils	1.5 m,			
Other soils	1.0 m.			

TECHNO GROUP®

A. Open trench, sloping walls without boarding

Laying Gravity Pipelines in the Ground

Minimum distance between pipe and trench slope depending on pipe diameter
Method for installation of pipelines in the ground

Preparation of sub-grade

Main and upper backfill

Required Granulation of Soil

Nominal diameter of pipe	Maximum particle size
$\text{DN} \le 100$	15
$100 < DN \le 300$	20
$300 < DN \le 400$	30
$300 < DN \le 600$	30
$600 < DN \le 1600$	40
$1600 < DN \le 3000$	50

Division of trench into zones of virgin soil (2) and the ground around pipeline (1)

Layers of soil with different density

Recommended minimum stiffness for pipes laid in ground not exposed to traffic generated loads

				Pipe stiffn	ess [kN/m²]			
Backfill material [Group]	Class of donsity	1 m < Thickness of cover < 3 m						
	class of defisity	2 Virgin soil group						
		1	2	3	4	5*	6*	
1	W	4	4	4	4	4	8	
1	M	4	4	4	4	8	8	
7	W	6	4	4	4	8	8	
2	м		4	4	8	8	8	
2	W			4	8	8	8	
3	м			8	8	8	**	
5 4 -7	W				8	8	8	
4	м				**	**	**	
			3 n	n < Thicknes	s of cover <	6 m		
4	W	4	4	4	4	8	8	
121	M	4	4	4	8	8	8	
-	W		4	4	8	8	8	
2	м		8	8	8	8	* *	
7 <u>4</u> 3	W	5		8	8	8	* *	
3	м			**	**	**	* *	
0520	Ŵ	Ŷ			**	**	**	
4	м				**	**	**	

Recommended minimum stiffness for pipes laid in ground subjected to traffic generated loads

Backfill material		-		Pipe stiffne	ess [kN/m²]		
[Group]	Close of doneity	y 1 m < Thickness of cover < 3 m 2 Virgin soil group					
0	class of defisity						
0		1	2	3	4	5*	6*
1	W	4	4	8	8	8	**
2	W		8	8	8	**	* *
3	W			8	**	**	**
4	W				**	**	**
			3 n	n < Thicknes	s of cover <	6 m	
1	W	4	4	4	8	8	8
2	W		4	4	8	8	8
3	W			8	8	8	**
4	W				**	**	**

*) In grounds with low carrying capacity pipe foundation should be reinforced e.g. with geotextiles (see paragraph 8.12.)

**) Static calculations are necessary for determination of geometry of trench and pipe stiffness.

In addition, when pipeline is laid under unsurfaced road (particularly if depth is small) pipeline may be covered with reinforced slabs for greater safety.

Manhole according to DIN 19537

621.643.2.06-038.742.2:628.253:620.1 DEUTSCHE NORM			November 19	
Prefabricated high departy polyethylene (PE-HD) manholes for use in serverage systems Dimensions and technical delivery conditions.			DIN 19 537 Per 3	
Rohre, Formatilione und Schächte aus Polyethylän (drey Dich Fantgschächte: Maße, technische Lieferbedingungen in Assping with current prestice in standsrot publiched s comme her been used throughout as the decinal manaer	e (PE-HD) for Absence by the Anternational C	erkanäle und -leitu Organization iter S	ngen. Jandardization (150),	
LITTERIOR	rig in min			
Con	tents			
Scope and reso of apprecision	4 Teering 4 Teering	tly of companients n ipenaets section		
Scope and field of application This success applications requirements and methods of test for prefactionand circular manholes made from high density prefactors are proceeded in sub- clause 2.2 of this standard and DN 19 SJT Part 2. This standard shall apply by analogy for prefactorsied man- toole components of other cross-sectional shaps. Concepts	2.2 Manhole con 2.2.1 Buttom and A bottom socian is a a) base; b) channel; c) benching; d) connector; e) single-unit shaft.	nponents lan mentele compon	ent that consists of	
The general terminology used here has been taken from DIN 19548, except for concepts and nomenclature charac- wistic of manifoles made from PE-HD components.	Table 1. Diemeter at single-	and wall thicknes unit shaft		
2.1 Manhole For the purposes of this standard, a manhole is a smuctum.	Martiple size	External dametec	Weismum wall Thisteau,	
sail on a buried drain or aswer, which is mainly intended to verifiation surposes and permits entry of a person for	1000	1107 * 2	14.0	

Far the purposes of this stantant, a marinele is a sinucture ball on a burled chain or aswes, which is mainly involved for ventilation purposes and parmits entry of a person for inspectar, meintenance and classing. It may be designed to accommodule sawage lifting augument and be provided at junctions of drama or severa and at points where these change direction, gradient or cross section (purced from DN to 548, Pebruary 1999 addition)

PE-HD manholes are assembled from prelabricated components, as illustrated in figure 1.

DN	External diameter 2	Minimum wall Thideleas, a*)
1000	1100 *1	14,2
1100	1200 * \$	37,8
1501	1800 * 8	49,7

Continued on pages 2 to 6

 Diameter and wall title of single-unit shaft

determined by patien

bi angle, unit acen				
Manttole Nov 2014	Esternal diameter, d	Minomum wall tradicieda, a*j		
1000	1100 *]	34,3		
1100	r200 * \$	17/3		
.4831	1800 * 1	49,7		

1. AN 1. AN 1.

Manhole according to DIN 19537

House Connection

House Connection

House Connection

Cost Comparisons Of Sewer Pipes

Description	Percent	Corrugated HDPE Pipes	PVC Spiral Wound Pipes	Reinforced Concrete Pipes	GRP Polyster Pipes	Asbestos Cement Pipes	Ductile Iron Pipes	Steel Pipes
Material cost	25%	20	16	12	18	14	25	22
Installation cost	45%	25	32	45	38	40	35	35
Maintenance	17%	6	8	17	12	15	10	10
cost	10%	8	8	10	8	10	10	10
Transportation	3%	1	2	3	3	3	1	1
Site Waste								
Total Cost	100%	60	66	87	79	82	81	78
Service Life		50	25	15	25	15	25	20
Annual cost		1.2	2.64	5.8	3.16	5.46	3.24	3.90

Specification Comparison Of Sewer Piping

Description	Corrugated HDPE Pipes	PVC Spiral Wound Pipes	Reinforced Concrete Pipes	GRP Polyester Pipes	Asbestos Cement Pipes	Ductile Iron Pipes	Steel Pipes
Chemical resistance	Excellent	Average	Poor	Average	Poor	Poor	Poor
Tightness/Joint quality	Excellent	Average	Poor	Average	Poor	Average	Average
Soil movement strength	Excellent	Poor	Poor	Poor	Poor	Poor	Poor
Service maintenance	Too Low	Low	High	Average	High	Average	Average
Service life	Excellent	Average	Low	Average	Low	Average	Average
Abrasion	Excellent	Average	Poor	Poor	Poor	Good	Good
Installation	Fast	Fast	Slow	Slow	Slow	Average	Slow
Site Waste	Low	Average	High	Average	High	Average	Average
Smoothness	Excellent	Excellent	Poor	Average	Average	Average	Average
Impact Strength	Excellent	Poor	Poor	Poor	Poor	Poor	Poor
Flexibility	Excellent	Poor	Poor	Poor	Poor	Poor	Poor
Tensile strength	Average	Good	Poor	Poor	Poor	Excellent	Excellent